Gaussian distributions on Riemannian symmetric spaces :
statistical learning with structured covariance matrices
Salem Said - Lionel Bombrun - Yannick Berthoumieu
Laboratoire IMS — UMR 5218

Talk based on two papers :

- 2015 : https ://arxiv.org/abs/1507.01760
- 2016 : https ://arxiv.org/abs/1607.06929 . . . both in IEEE Trans. Inf. Theory

In questions of Science, the authority of a thousand opinions
is not worth the reasoning of a single individual - Galileo
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What is a Gaussian distribution ?

historic point of view : who discovered the Gaussian distribution ?
Statistical inference
Gauss (1809) : maximum likelihood < centre of mass

we generalise this definition to Riemannian symmetric spaces

Diffusion process
Laplace (1810) : central limit theorem, random walks, Brownian motion

generalises to any space with a “Laplacian”

Statistical physics

Maxwell (1860) : rotation invariant independent components
velocity distribution in ideal mono-atomic gas

Poincaré (1912) : projection from a uniform distribution on $*(0'/?)
extensively developed by Kac and Wiener

Variational definitions

— Information theory : maximum entropy for given dispersion

— Quantum mechanics : equality in Heisenberg inequality

~» different points of view require different definitions or generalisations
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The role of invariance

for Gaussian distributions on R

1

(x|%, o) =D, 4% o) =~ Nlog o - §N< %)?

X|X,0)= —— €Xx —_— X, 0)=— og 0° — — n—
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normalising const. centre of mass problem
does not depend on X

... everything follows from translation invariance

normalising const.

+00 —_3%)2 +o0 2
Z(x,0) = / exp[—%] dx = / exp[—%] dx = Z(0,0)
translation invariant integral !!
=Z(o)
and we know the Poisson integral . . . = V2no?

~» replace translation invariance by invariance under a group of isometries



The role of invariance

replace R with a Riemannian homogeneous space M . . .

— Lie group G of isometries acts Transitively on M

£€G: d(g-x.g y)=d(x.y) dv(g - x) = dv(x)
Le =z
invariant distance invariant volume

.. . everything follows from isometry invariance

1 _ d*(x, X)
Zo) P 202
=

p(x|x,0) = density w.r.t. dv(x)

normalising const
does not depend on X

normalising const. =

Z(x,0) = ‘/Mexp[—%] dv(x) = '/A;exp[—%] dv(x) = Z(o,0)

let X = g - 0 and use isometry invariance of the integral

=Z(o)

but how can this function be computed??




Computing Z(o)

M a symmetric space of non-positive curvature . ..

M= G/K where G reductive of non-compact type
K compact subgroup

0(g) = (g™ )T involution of G

k-o=o0 fork € K

Why the name symmetric space ? s(g-0) =0(g)-o
N

symmetry about o

Polar coordinates x(a, k) =exp(Ad(k)a) - o ke K, aea (a: Cartan subalgebra)

distance to origin d?(x,0) = B(a, a) B(a, a) = tr(a?) (Ad-invariant form)

geodesic through origin ~ x(t) = x(ta, k) k, a constant

Rank of M = dima : dimension of maximal flat subspace

Expression of Z(o) Z(o) = Const. X / exp[ B(a, a)] D(a) da

where D(a) = [, sinh™(JA(a)|) A :a — R positive root of multiplicity m,



Statistical inference

M a symmetric space of non-positive curvature . . .

i , . T o
log-likelihood function : l(x, 0)=—Nlog Z(o) — 357 ; d* (xp, X)

— —

centre of mass problem

—MLE of x

N
Xy = argmin,,, Z d?*(xy, X) maximum likelihood & centre of mass !!
n=1

~» M has non-positive curvature = existence and uniqueness of centre of mass

—MLE of &
natural parameter 5= - 1/20'2

cumulant g.f. Y(n) =log Z(o) (strictly convex)

v = (¥ (F 2N, d20may))

Mission accomplished

it is enough to know how to - compute centre of mass

- compute ¥(1)



Max. entropy property

A kind of exponential family

natural parameter cumulant g.f. suff. statistic cumulants

n=-1/20" ¥(n) = log Z(0) A=d*(x,X) Y'(n) =E(4)
Y () = Var (4)
¥ () = Ka(A)

Duality and entropy

p = E(Q) Y (p) = entropy of Gaussian distribution

Legendre transform of 1/(17)

Max. entropy

. the Gaussian distribution is the unique maximum entropy distribution
among all distributions on M having centre of mass x and dispersion p . . .
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Some examples

Rankof M = 1:

A — Hyperbolic space H,

Rankof M = 2 :

2

Z(o) = Vol (S™) ></ e_Zr(TZ sinh™'(r) dr
0

B — 2 X 2 real covariance matrices

M = GL(2,R)/0(2) a = {diag(aq,a,)|ar, aa €R}
B(a,a) = a} + af

positive roots May=a;—a, ;my =1

2
= Z(c) = Const. X 02X e® xerf ()

C — 2 x 2 complex covariance matrices

M = GL(2,C)/U(2) a = {diag(ay, ay)|ar, a; eR}
B(a, a) = a} + a}

positive roots Ma)=a;—a, ; my =2

= Z(o) = Const. Xazx(e"z—1)



Some examples

Rankof M = n:

D — n X nreal covariance matrices
M = GL(n,R)/O(n) a = {diag(ay, ..., a,)|a; €eR}
B(a,a) =a? +...+ a?

positive roots Ma)y=a;—ajfori<j;my=1

2
= Z(o) = Const. X/‘g" exp | e ‘ [1;<; sinh(la; — a;|) da

262
E — n X n complex covariance matrices
M = GL(n, C)/U(n) a = {diag(ay, ..., ap)|a; €R}
B(a,a) =af +...+ a?

positive roots Ma)y=a;—ajfori<j;my=2

_ |a] 2 S b2
= Z(o) = Const. fon exp | = [1i<; sinh*(la; - a;|) da

o2



Some examples
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n = 20 : graph of normalising const. Z(o") n =20 : graph of & as function of p

F — n X n quaternion covariance matrices
M = GL(n, H)/Sp(n) a = {diag(ay, ..., ay)la; eR}

B(a,a) =a} +...+ a?

positive roots Ma)=a;—ajfori<j;my=4
2
= Z(o) = Const. Xf&” expl—z‘{iZ l [Ti; sinh*(|a; — a;|) da

G — Further examples : (Toeplitz, Block-Toeplitz), detailed in 2016 paper (arxiv)
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Centre of mass and covariance

1

Variance function : E(x) = = / d*(x, 2) p(z| X, ¢) dv(z)

2 JIm

M has non-positive curvature = & strictly convex along geodesics

Riemannian gradient : V&) = - / Log,(z) p(z| X, o) dv(z)
M

X is stationary point :

forany x e M
then
in particular

however

denote s : M — M the symmetry about x

Eos=6& (s is an isometry and fixes X)
VEos=4ds-VE (chain rule)
VE(x) = ds - VE(X)

ds=-Idat x=Xx (s reverses geodesics at X)

~» There exists an alternative proof which holds in any homogeneous space (using Fisher identity)



Centre of mass and covariance

Covariance form: C(u,v) = / (u, Log(2))(Log:(2), v) p(z|x, o)dv(z) u, vemniM
M

(Log 5(2) ® Log 3(2) ) (u, v)

Invariance property
Ky ={keGlk-x=x}

R: Ky — O(TzM) Ry = dk|; isotropy representation

C(u,v) = C(R-u,R;-v)
each M, irreducible

~» De Rham decomposition theorem: M = M; x ... X M,

+u v=wvit...+ Vv ug, v, tangentto M,

u=u +...
, . Yalm . .
Schur’slemma = C(u,v) = X, dim My (u, v)z (adiagonal matrix !!)
Alternatively ...
I(u,v) = 45> C(u, v)

Fisher information form :



Mixtures of Gaussian distributions

~» to be concrete, (w.l.o.g.), let M= GL(d,R)/O(d)

{ larga database of } { statistical population of } { learning model
= = (

. . ; . - = Structure
signals or images covariance matrices sufficiently general) —_—

— Learning model :

K
p(x) = W X p(x| X , O%)
N o NEE—
mixture distribution : Gaussian distribution :
model of a generic population MaxEnt. model of a cluster
— Learning problem :
real density g(x) learned density p.(x)
hopelessly complicated best approximation of g(x)

within learning model

p. = argmin, D(q||p)
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The EM algorithm

— Empirical cost function :

based on data x;, ..., xy

D(ql )—/ () log [ IX dv(x)~lZN:lo (x)—lim (x)
allp) = | a0 log| o ~ N 2 Bt = D) o plx,

n=1

= max. likelihood “as if

) ) data were independent”
— EM is a usual solution :
E step compute conditional weights 7, (x,) % 1 () = 7 (Xa| P)
M step O, = (usual formula)

Xe = argmin, YN, m (x,) d2 (X, X)
e = (Y7 (.0)
— In practice : somewhat difficult to exploit!!

a) linear convergence, gets trapped in local max. or saddlepoint
b) stores and processes all data points (“big data” problem)

— Ongoing work :

Stochastic EM : SEM, SAEM, . . ., overcomes both these problems

10/14



“one-pass” EM

— Meaning of one-pass : each data point x, is treated only once, then forgotten
the asymptotic performance must be the same as MLE

— Examples of efficient one-pass algorithms :

stoch. Newton method ; natural gradient ; averaged stoch. gradient

Parameter space

s s € SK=1 (unit sphere)
o={0=| o |: X €M = §KT e MK x RX
(%) N <0

Where does the sphere come from?

%
Il

s=(51,...5 5c) < = W

a usual replacement !!

~» it is necessary to compute the Fisher information of ©
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Natural gradient
How to achieve efficiency ??
GA,M = Expg, [ynﬂ Ag, u(xnﬂ)] Exp : from a natural connection
Yne1 @ Step size
Ag: T, 06— T,0
U (1) = dlomisture (X1 | 6,)

~»  Ap = inverse of Fisher information

another possibility would be inverse of Hessian (tractable)

Example of Ag K=1and M= GL(d,R)/O(d)

® =R x Pd
~»> De Rham decomposition: Py = R X SPy4

t/d

x — (t,s) t = log det(x) s=¢ex

decomposition of tangent space :

v e T,P, vi =tr(x7'v)
v=x(s"v+ (1/d)v) A Vo = ...




Natural gradient

Fisher information

¥ (1) v
lpv = #1(n) Vi 0 = (o,x)
$2(1) V2

———

v=_(vg,v)
tangent vector at 6

— Notation
Y=+ Y(n) = log Z(o) slide no. 7
¥, (1) ~ log(c)
Pa(n) = 41 Y(n)/ da slide no. 8
d=1; dy= 440 4
~»  Ag = inverse of Iy
— Score form
u(x) = d ( nd*(x, %) — v(n)) ... usual calculations
—

de(x] 6)



The algorithm

developed by post-doc Paolo Zanini

to process Xp41: A1 = fin + % (d?(Xners Xa) = ¢¥/(n))
Mn

/En+1 = ?n + Yo+ (tn+1 - ?n)

3 = Y
Sp1 = Expg, [ ﬁ;ﬂ) Logs, St ]
§(n+1 = e§n+1/d §n+1
— Preliminary results
Vo (fa—n) = N(O, ! ) efficient
¥ (m)
vn(t,-t) = N(0,0?) efficient

Vnlog,3, = ... we don’t know yet!!
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Summary ...

- Gaussian distributions give a statistical foundation to Riemannian centre of mass

- they can be defined on any Riemannian symmetric space of non-positive curvature

- in particular, this includes many important spaces of (structured) covariance matrices

- they have deeper connections with information geometry (not mentioned here)

- a Gaussian distribution is a maximum entropy model of a “cluster” in a manifold

- they provide a learning paradigm where any density on a manifold is a mixture of clusters

- estimating such mixtures is possible in principle using an expectation-maximisation algorithm
- however, this does not realistically apply to high dimensional big data : current difficulty!!

- to overcome this, we wish to consider stochastic or “one-pass” versions of EM

- the figure of merit is taken to be a form of consistency (minimum asymptotic covariance)

- this has lead us to consider the Riemannian geometry of the space of Gaussian distributions

- the model is nice but the applications still need to mature ... Thank you for your attention !!
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